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Insights in erosion instabilities in nonconsolidated porous media
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We investigate the different flow regimes in nonconsolidated porous media. The porous bulk is soaked with
water, which is then pumped out of it, across the boundary defined by the particles at the edge of the bulk.
Experiments are carried out on sand and glass beads soaked in distilled water and placed in a circular
Hele-Shaw cell, the flow being radially convergent. We show, for a given value of flow velocity~the yield
velocity!, the existence of an unstable regime where the fluid-porous interface is deformed and branches
upstream in the bulk. When this velocity is further increased, two cases arise depending on the value of the
yield velocity: Either a second threshold is passed, global fluidization of the porous bulk sets in, and the flow
becomes stable or the instability persists and the canal arborescence continues to grow. The driving mechanism
of this instability is thus the permeability contrast across the edge of the porous bulk; when this contrast
diminishes, the flow becomes stable. A force balance on the boundary particles predicts the threshold value for
the fluid velocity, beyond which the flow is unstable. Using a Saffman-Taylor inspired linear perturbation
analysis@Proc. R. Soc. London, Ser. A245, 312 ~1958!#, a dispersion function is found~predicting the
wavelength dependence of the instability growth amplitude!, taking into account the particle arch formation in
the porous bulk. We then find the velocity of propagation of the receding front, predicted to be proportional to
the particle velocity beyond the front, itself described by a Bagnold concentrated suspension flow@Proc. R.
Soc. London, Ser. A225, 49 ~1954!#. This front velocity is successfully confronted with experimental mea-
surements. A screening effect characteristic of Laplacian growth phenomena is seen in the experiments as
testified by flow rate conservation between the different branches of the arborescence and direct dye visual-
ization. The topologies obtained are fractal and the measured dimensionD f51.621.7 compares favorably to
the calculated dimension from the branching angle distribution.@S1063-651X~98!10610-4#

PACS number~s!: 47.55.Mh, 47.20.Ft, 61.43.Hv, 64.60.Lx
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I. INTRODUCTION

The problems of flow of granular materials, fracture, a
erosion of nonconsolidated porous media have gained m
insight recently. The solid stress distribution in a comp
granular packing has been investigated both theoretically
experimentally@1–3# and a considerable amount of work h
been done on avalanche phenomena and stability under
@4,5#. A large body of work has also been published on
problems of sand infiltration in oil or water wells, leading
different analytical models@6–8#. Growing cracks have bee
described using lattice models in which elastic bonds
broken with different probability laws or lattice geometri
@9,10#. Erosion models also rely on lattice simulations
which the soil level is calculated at each point taking in
account water flow from neighboring lattice points@11–13#.
In this article we look at the different flow regimes possib
in a nonconsolidated porous medium@14,15#, showing the
existence of an erosion instability, and we propose a theo
ical treatment based on a solid and fluid force balance an
Saffman-Taylor inspired stability analysis@16,17#. The po-
rous medium is soaked with a Newtonian fluid that flo
across an interface defined by the boundary of the por
bulk, in a direction from the bulk outward. We used a circ

*Author to whom correspondence should be addressed.
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lar Hele-Shaw cell filled with sand or glass beads in wh
the soaking fluid is pumped through a hole in the center
the lower plate@18#, thus establishing a radially converge
flow. A controlled normal force is applied on the upper pla
in all our experiments.

Our theoretical approach differs from the models based
classical elastoplastic rupture@6–8# by taking into account
the granular nature of the material through the redistribut
of the normal stresses and by predicting a selective ero
regime, which we call the unstable regime. This predic
~and observed! regime stands in sharp contrast to the tw
stable regimes of global fluidization or liquefaction and s
tionary seeping flow, occurring for slightly different flow
conditions. These stable regimes~in the sense of perturbatio
analysis! are the only ones predicted by the existing plas
yield models@6–8#.

As the flow rate increases in the cell, we observe a fi
transition from a stable seeping regime to an unstable ero
regime. As this threshold is reached, a decompaction oc
in the porous bulk, with fractures forming near the edge@2#.
In our experiments, stress arches across particle con
form in the bulk, redirecting the forces away from the rad
direction. These forces are solid-solid interactions betw
the bulk particles, resulting from a combination of fluid pre
sure and the weight of the particles. The existence of a st
threshold above which the particles begin to move is due
solid friction between the particles and the confining pla
6051 © 1998 The American Physical Society
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6052 PRE 58P. CERASI AND P. MILLS
on the one hand and between the particles themselves o
other @19#. The chains of strong contact forces pass
through these arches are unstable unless other particles
ticipating in weaker force chains fill the space immediat
behind the arches@20#. Thus the particles on the edge of o
porous medium form unstable arches, which will be the fi
to collapse when the threshold is reached. The irregular
terface left by the decompaction process induces local de
tions from a purely radial flow, breaking the symmetry in o
system ~average stress distribution, isobar configurati
etc.!. As the current lines converge on the tips of sm
breaches in the interface created by the fracturing proc
these tend to grow due to the increased value of the lo
fluid stress, compared to other areas, which are then e
tively screened. Thus particle-free waterways will deve
and branch upstream in the porous bulk,againstthe direction
of flow. As opposed to the now classical fluid digitation e
periments, the flow in this instability is directed from a r
gion of low permeability to a region of high permeabilit
whereas the interface between the two regions recedes
the zone of low permeability. Here the interface is no
meniscus between two nonmiscible fluids but simply the b
derline between immobile particles and particles mov
with the fluid in a suspension. Nevertheless, we show
this instability still belongs to the class of Laplacian growth
seemingly in contradiction with the predictions of th
Saffman-Taylor theory, the driving mechanism being t
permeability contrast across the interface. Depending on
value of the yield velocity~which varies, for example, with
the external force applied on the solid porous matrix!, we can
predict two different evolutions as the fluid velocity is in
creased. A second threshold may be passed, above whic
stress is everywhere strong enough to override the fric
forces and the whole bulk moves, establishing a global
idization. In fact, as the mean velocity increases near
boundary of a growing tip, a larger quantity of sediment
poured into the adjacent channel, tending to block it and t
to diminish the size of the channel and at the same time
remove the Laplacian screening, leading to a uniform mo
ment of the front. Another case, for higher yield velocity,
the persistence of the unstable flow regime for all fluid v
locities above threshold with no transition to fluidization.
this situation, the sediment poured into the growing canal
evacuated faster than the receding tip of the waterways. T
the canals are characterized by a very high permeability~as
compared to the porous bulk! resulting in the persistence o
the Laplacian screening and hence of the unstable state

It may be helpful to consider, at first, a different proble
showing an analogy to our experiments, namely, the
problem. A narrow container is filled with a granular mat
rial, sand, for example, and the weight of the particles
recorded as a function of the heap’s height@2,21#. It is found
that part of the stress is redirected at the wall of the cylind
making the weight plateau at a constant value, independe
of any further increase in height. The formation of partic
arches in the granular medium is responsible for this st
redistribution, with the uppermost particles pressing sidew
on the lower ones. Furthermore, if the lower confini
boundary is suddenly removed, a distribution of fractu
appears in the column during the decompaction process@2#;
this distribution presents a power-law dependence on the
the
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of the cracks, indicating that all sizes are represented~scale-
independent distribution!. A similar phenomenon is observe
in our experiments with sand, at the flow-induced stre
threshold; cracks appear in the porous bulk while it is lo
ening up, exhibiting as well a power-law dependence on s
The alteration of the flow characteristics near such crack
responsible for the onset of the instability, which we w
now analyze in more detail.

II. THEORY

We establish a theoretical model of the erosion instabi
by first examining the stress distribution in a compact gra
lar heap and its stability under external forces such as gra
or the fluid pressure gradient in our experiences. This an
sis gives us the expression of two yield velocities cor
sponding to a decompaction of the bulk and a transition
the erosion instability. The instability is due to the perm
ability contrast across the interface; when this contras
weakened, the instability is killed and global fluidization se
in. Since the instability is believed to belong to the Laplaci
growths class, the permeability contrast can be erased on
the Laplacian screening can be avoided and the growing
terways filled with bulk particles. In the framework of a lin
ear stability analysis, by supposing the existence of a sm
sinusoidal perturbation of the interface, writing the contin
ity of pressure and flow rate as well as mass conserva
across the interface, and adding the expression of the
stable yield velocity, we arrive at a dispersion equation~re-
lating the instability growth coefficients to the canal width
wave numberk!. This equation is then reconsidered to ta
into account the effects of the formation of particle archi
in the porous bulk. We then express the particle velocity a
the decompaction wave velocity in the different regimes,
pending on the value of the yield velocity; we thus find t
conditions for global fluidization to take place. The nonline
regime is also briefly described and the fractal dimension
the arborescences predicted.

A. Solid stress distribution due to Darcian flow
in a granular heap

To simplify matters, we will consider a planar geomet
and use the silo analogy~see Fig. 1!. Indeed, in the same wa
that the dry granular heap in the silo is subject to the act
of the constant force of gravity, the bulk in our cell is subje
to the pressure gradient force~which is constant in plana
geometry! and the same redistribution of stress occurs

FIG. 1. Analogy with the silo problem in planar geometry. O
the left is a column of sand fractures under its own weight when
lower boundary is removed and on the right are cracks form n
the interface of sand particles under water flow.
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PRE 58 6053INSIGHTS IN EROSION INSTABILITIES IN . . .
both experiments, due to solid static friction. In terms
volume forces, the analogy is then

rgW↔gradp. ~1!

The normal stress distribution is described by the Jans
hypothesis@22#

sxx5Kszz, ~2!

with the sharing coefficient 0,K,1, and the Coulomb fric-
tion force is written as

szx5 f ssxx , ~3!

where f s is a static solid friction coefficient. We next writ
the force balance at equilibrium for unit bulk volume b
considering the force that should be applied at the interf
to maintain the bulk in place@1#:

]s i j

]xj
1

dFexti

dV
50, ~4!

2
ds

dz
2

2 f s

e
Ks1ugradpuz50 ~5!

for our experiment, withszz5s ande the width of our Hele-
Shaw cell~or a unit width in the silo bulk!. 2ds/dz is the
volume force needed to counteract the fluid force pushing
the bulk. This normal stress variation is a direct conseque
of the Janssen relation. The solution of Eq.~5! is

s5lugradpuF12exp
2~z1z0!

l G , z0.0, ~6!

where l5e/2K f s is the Janssen screening length. We
sume the external applied force to be much larger than
internal vertical pressure distribution due to gravity in t
porous bulk, allowing us to neglect arg term in Eq.~5!. The
first derivative of Eq.~6! evaluated at the interface gives u
the external force needed to maintain equilibrium in the bu

ds

dz
52u¹W pue2~z1z0!/l,

2
ds

dzU
z50

5
2 f sP

e
⇒u¹W pu5

2 f sP

e
.

In the latter equationP is the external pressure associat
with the confining force exerted on the bulk. As the bu
may fracture, we took the maximum value of the force e
suring equilibrium, that is,z0→0. The stability condition for
the bulk as a whole is thus given by

ugradpuyield5
2 f sP

e
,

which, combined with Darcy’s lawv̄W5(2a2/am)gradp,
gives an estimate of the velocity needed for decompactio

v̄dec5
2a2

am

f sP

e
, ~7!
f
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wherea is the average size of the particles,m the fluid vis-
cosity, anda21 the porous permeability. In the same wa
one can estimate the first yield velocity~corresponding to the
instability threshold! by writing the same balance of force
on one particle:

ugrad~p!uyield a352 f sPa2

leading to

v̄y52
a

am
f sP. ~8!

An important point remains to be clarified: Why should on
the first rows of porous particles be detached from the bul
the threshold? To answer this question we will suppose
a crack appears at a distancez8 from the interface~defined
by z50! so as to separate the particles into two distin
blocks, which we will call block 1 and block 2.

Just as the blocks are about to move, we can write
force equilibrium equation~5! for each block:

2
ds1

dz
5ugradpue~z82z0!/l, z0 ,z8.0

~9!

2
ds2

dz
5ugradpue2z8/l.

This is the force per unit volume that must be applied
order to maintain each block in position. Asz8→0, the force
needed to maintain block 2 in place approaches its maxim
value ugradpu. Thus the cracks near the bulk edge will gro
first since the force that would be needed to maintain them
place is always higher than that needed for the other blo
and the edge particles will therefore be the first to leave
bulk.

B. Linear stability analysis of the interface

We will now write the stability condition for the porou
interface, using a classical perturbation approach@16#. Figure
2 shows the interface, in planar geometry. The fluid press
field in the porous medium~region 1! and outside it~region
2! in a Hele-Shaw cell satisfies, if incompressible,

FIG. 2. Porous medium’s boundary in a planar Hele-Shaw
as seen from above. The packing volume fraction is represente
F* and the particle suspension resulting from porous bulk loos
ing and separation is denoted asF. A small perturbation of the
interface is shown and the arrows indicate the direction of the m
nonperturbed fluid velocities.
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6054 PRE 58P. CERASI AND P. MILLS
¹2p50. ~10!

The velocity field will be denoted by

v15v011dv1 , v25v021dv2 , ~11!

wherev01 andv02 are the nonperturbed fluid velocities in th
porous bulk and outside it, respectively, with the pertur
tionsdv1 anddv2 . To zeroth order, the pressure field can
written, using Darcy’s law in region 1 and a similar law fo
a two-dimensional~2D! viscous flow in region 2,

p05 H 2a1v01z,
2a2v02z,

z,0
z.0. ~12!

We now introduce a small sinusoidal perturbation of the
terface between the porous particles and the fluid~at the
boundary between regions 1 and 2! of amplitude z
;exp@ikx1st#. At first order, we take a similar pressure pe
turbation field

dp1;w1~z!exp@ ikx1st#,

dp2;w2~z!exp@ ikx1st#

and by Eq.~10! we find ~retaining the physical solution!

w15w01e
kz, w25w02e

2kz. ~13!

This perturbation induces a corresponding perturbation in
velocity field, given by Eq.~12! ~for small z!:

a1dv152
]~dp1!

]z
'2kw01z,

~14!
a2dv251kw02z.

1. Dispersion equation

The velocity u of the interface can correspondingly b
written as

u5u01du52
dz

dt
~15!

and the perturbation velocity

du52
dz

dt
52sz.

u is the velocity with which the decompaction wave reced
through the porous bulk. We now write the dispersion eq
tion associated with the instability’s growth:

sz52Gdv1 , ~16!

whereG is a function of the fluid velocityv1 and the yield
velocity vy . In order to find the explicit form of this func
tion, we will first look at the flow of particles immediatel
behind the front. Conservation of mass across the rece
interface~as written for the solid particles! gives

2u~F* 2F!5Fvp , ~17!
-

-

e

s
-

ng

where F* is the bulk volume fraction andF the volume
fraction after decompaction, just beyond the front;vp is the
particle velocity at the onset of decompaction. A slight di
tation is associated with this decompaction, leading to a
ference of volume fraction across the front not bigger th
10%. Thus~for F;F* !

2u5
F* vp

DF
5k1vp with k1.1. ~18!

Beyond the front, the particles of the dilating bulk expe
ence a pressureP1DP due to the external force applied o
the cell combined with the increase in interparticle force
sociated with the dilatation@23# ~region 2 in Fig. 3!.

The mean particle velocity in this configuration can
calculated with the Bagnold equation@23#

2g
d

dy S dvp

dy D 2

2
]p

]z
2

2 f sP

a
50, ~19!

or

2
d

dy S dvp

dy D 2

1
V*

a3 ~v12vy!50,

the solution of which is

^vp&5E
0

e/2

vpdyY E
0

e/2

dy5CV* 1/2~v12vy!1/2, ~20!

with

C5
&

10 S e

aD 3/2

, V* 5
am

g
,

where againe is the cell gap,a the particle size,a21 the
permeability,m the fluid’s viscosity, andg a constant relat-

FIG. 3. Schematic illustration of the interface as the porous b
is undergoing decompaction. In region 1, before the front, the p
ticles are immobile and the packing is maximal (F5F* ). In re-
gion 2, just after the front, the bulk is dilating and the particl
begin to move with the Bagnold velocitynp . In this region, the
particles experience the external applied pressureP and an addi-
tional pressureDP due to the dilatation. The volume fraction i
slightly lower than that in region 1~again, because of the dilata
tion!. In region 3, the particles begin to be carried away by the fl
and no longer ‘‘feel’’ the outside pressureP. The volume fraction
diminishes with the distance from the front.
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PRE 58 6055INSIGHTS IN EROSION INSTABILITIES IN . . .
ing the momentum transfer between particle layers to
dilatation pressure, which depends on the particle charac
istics @23#. From here onward, the angular brackets in
notation of the average particle velocities will be dropp
without ambiguity since we will not deal with the instant
neous velocities. At this point, we wish to stress that
Bagnold flow formalism adopted here may not be the b
choice, as it concerns collision driven granular flow and
solid friction dominated granular flow, as in our case. Rec
experiments as well as computer simulations@24# would
seem to point to an exponent 1 instead of 1/2 in Eq.~20!,
even though the flow geometry is quite different in our e
periments~confined flow vs open channel flow; see the d
cussion in@24#!. However, there are no well defined behav
laws for concentrated suspensions exhibiting dry friction
for now and as we will see in Sec. III, Bagnold’s law
apparently well verified in our case, at least near the thre
old.

We can now introduce the Bagnold velocity in relatio
~18! and develop the fluid velocity to first order:

u52k1CV* 1/2~v012vy1dv1!1/2.

At the threshold, this equation is nonlinear and we can
pursue our analysis:

v015vy , u52k1CV* 1/2~dv1!1/2. ~21!

For higher velocities, this expression can be linearized

v01.vy , u52k1CV* 1/2~v012vy!1/2F11
dv1

2~v012vy!G .
~22!

By solving Eq.~14! for the pressure perturbation and cons
ering pressure continuity across the interface~see the Appen-
dix! we arrive at the dispersion equation

s5
k1CV* 1/2

2

v01

~v012vy!1/2 Fa12k8a2

a11k8a2
Gk, ~23!

wheres is the amplification factor,k8 the wave number as
sociated with the interface perturbation, andk8 a constant
given in the Appendix. Thea i are given by the Kozeny
Carman@25# relation and a similar relation for 2D viscou
flow on the other side of the interface:

a15a10

m0

a2 with a105180
F* 2

~12F* !2 ,

~24!

a25a20

m~F!

e2 , a20512.

Equation ~23! implies a linears(k) relationship, in agree-
ment with our Laplacian growth supposition, that is, amp
fication of large wave numbers preferentially. However,
must now take into account the stabilizing effect of parti
arches present in the bulk. Let us write the force balance
such an arch of characteristic sizej:

gradpj352 f sPa2,

giving us a new estimate on the threshold velocity:
e
r-

e

e
st
t
t

-
-

s

h-

t

-

-

n

ṽy52 f sP
a

a10m0
~ka!3.

When ka51 we recover the former yield velocityṽy5vy .
This leads us to a new dispersion equation

s5
k1CV* 1/2

2

v01

@v012vy~ak!3#1/2 Fa12k8a2

a11k8a2
Gk. ~25!

A cutoff wave number@which is different from the physica
cutoff associated with the particle size in Eq.~23!# appears,
shifting the smallest canal widths that will develop in th
unstable regime to larger length scales:

kcutoff5S v01a10m0

2 f sPa4 D 1/3

. ~26!

For 200-mm particles with a water flow rate equal to 2 ml/m
and an external confining pressure of 300 Pa, which
equivalent to 1 kg on an upper cell plate of 10 cm diame
the shift in wave number is fromkcutoffa51 to 0.17 in Eq.
~26!, corresponding to a shift fromlc5200mm to a minimal
branch width oflc53.6 mm.

2. Instability phase diagram

A small distance downstream, the particles flow in a co
centrated suspension@with F(z) decreasing withz, the dis-
tance from the interface, as in region 3 in Fig. 3#. Two cases
arise, depending on the ratio of the particle fluxFnp8 down-
stream of the front and the decompaction fluxF* np . ~a! If
np8.k1np then the particles downstream of the front a
evacuated more rapidly than the incoming flux of fresh
decompacted bulk particles, with a very small apparent v
ume fraction, i.e.,F→0. ~b! On the contrary, ifnp8,k1np

then the decompaction front recedes into the bulk faster t
the rate of evacuation of the particles downstream, with
effect of plugging the newly created channel (F;F* ). In
this situation of concentrated suspension flow, Bagnol
equation still applies and we can write the downstream
erage particle velocity as~no friction term!

vp85CV* 1/2v1
1/2. ~27!

This last flow regime is thus stable and corresponds to glo
fluidization, the transition occurring for low values of th
threshold velocity. The value of the second threshold vel
ity is given by ~Fig. 4!

k1CV* 1/2~n12ny!1/25CV* 1/2n1
1/2,

~28!

ny85
k1

2

k1
221

ny .

Above this second threshold, the permeability contras
very low ~the Laplacian screening is lost!. The unstable re-
gime, for lowvy , is thus restricted to the interval@ny ,ny8#.

For higher yields, i.e., if the decompaction occurs
higher fluid velocities, the particles will be washed aw
with a velocity np8 comparable to the fluid velocityn2 very
close behind the front. Thus, asF will be negligible com-
pared toF* , we can write@case~a!#
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vp8'v2'
1

12F* v15k2v1.k1vp . ~29!

Here the Laplacian screening will persist.
For any value ofn1 above the threshold,np8 will be bigger

than u. In the limiting case, then1 value for whichnp8 is
equal tou marks the transition back to the Bagnold regim
described above~Fig. 5!:

k1CV* 1/2~n12ny!1/25k2n1

and:

ny trans5
1

4 S k1*

k2
D 2

5
V*

200 S k1

k2
D 2S e

aD 3

. ~30!

We can summarize the different results obtained above
drawing a phase diagram illustrating the various flow co
figurations~Fig. 6!.

C. Nonlinear regime

When the yield velocityny is above the Bagnold viscou
transition valueny transand the fluid velocityn1 is well above
ny , we are in the unstable and nonlinear flow regime. It is
this regime that the canal arborescences develop m
quickly.

The arborescence develops primarily at the tips, but in
fully developed unstable regime, lateral erosion also sets
widening the lower-order branches. To within a numeri
constant, the average flow rate in one branch~of thicknessl
and heighte! is given by

FIG. 4. Velocity u of the receding front and Bagnold down
stream particle velocitynp8 in the case of low threshold velocity
The unstable regime is restricted to the interval betweenny andny8
as the newly formed channels cannot be evacuated by the
rapidly enough to ensure Laplacian screening beyondny8 ~the chan-
nels collapse and the porous bulk is entirely fluidized!.

FIG. 5. Front velocityu and downstream particle velocitynp8 in
the case of high threshold velocity. Here the particles are car
away with the fluid faster than the receding front, keeping the gr
ing channels from clogging. The high channel permeability indu
converging current lines on their tips, thus ensuring their grow
and maintaining the Laplacian screening. The limiting case is a
shown, defining the transition yield velocityny trans.
y
-

st

e
n,
l

ql5^v&el'e2ltw /m0 ,

wheretw is the wall shear stress. As the flow rate increas
so does the wall stress, until it reaches the lateral eros
yield t0 . Above this threshold,l increases, causing at th
same time a decrease in the wall shear stress. We can
write for the steady state

ql'e2lt0 /m0 .

Conservation of flow rate between then order-l branches
and the parent branch gives

nlql5const5q0 ,

which implies

nll5l0 . ~31!

III. EXPERIMENTAL RESULTS

Our experimental setup consists of a circular Hele-Sh
cell with a 2-mm hole drilled in the center of the lower plat
A plastic tube connects this hole to a syringe mounted o
high precision pump, with which we impose the flow rate
the cell~the flow is radiallyconvergentand the interface we
analyze is materialized by the circular edge of the solid m
trix near the central hole!. We take sand or spherical glas
beads for the nonconsolidated porous medium and disti
water for the fluid. The sand granulometry gives partic
sizes centered on 250mm, while the glass beads we use
consist of two sizes, centered on 40 and 200mm. The spac-
ing between the plates varies from a minimum of about th
layers of superimposed particles up to about ten layers.
permeability of the sand was measured and found to be
Darcy. We recorded the experiments with a video cam
and stored the images on a computer equipped with an im
analysis program@26#. Figure 7 shows three erosion patter

id

d
-
s
h
o

FIG. 6. Phase diagram showing the different flow regimes a
function of the first threshold velocity. The last depends on
amount of force exerted on the cell, the particle shape and size,
the gap width between the plates of the cell. On the left of
transition yield velocityny trans, the particle flow is always that of a
concentrated suspension and can be described by the Bagnold
tion ~both in the narrow unstable region and in the fluidized sta!.
On the right ofny trans the particles flow in a diluted suspensio
which can be assimilated to a viscous flow. Because of the Lap
ian screening, there is no transition back to a stable fluidiza
regime.
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FIG. 7. Branching topology obtained in unstable pumping of water from sand particles~with a size of;250mm and flow rate of 8 ml/mn
on the left! and from spherical glass beads~with a size of;200 mm and flow rate of 4 ml/mn in the middle and size of;40 mm and flow
rate of 0.08 ml/mn on the right!.
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obtained with sand and glass beads.
The topology of the figures obtained in the intermedia

unstable regime depends strongly on the shape and the
of the constitutive porous particles, as well as on the fo
applied on the particles via the upper plate. Irregular s
particles will tend to form much more stable arches th
spherical glass beads will and applying a large force on
upper plate will consolidate these arches even more. Acc
ing to Eq.~8!, we expect to find a linear dependence of t
unstable threshold velocity with external applied force in o
experiment, rather nicely confirmed in Fig. 8.

The different topologies in Fig. 7 illustrate two differen
paths followed in the phase diagram of Fig. 6. In the exp
ment with sand, the yield velocity was about 50 times hig
than that needed to move the smallest glass beads an
global fluidization could be observed, independently of
fluid velocity n1 . We are thus in the case of a vertical path
the right ofny trans, in the unstable region.

On the other hand, in the experiment with the small bea
the figure took 20 times longer to materialize as compare
the sand. The width of the unstable regime, in terms of fl
rate, is very narrow, probably since the contact surface
tween the beads themselves and between the beads an
walls is much smaller than the contact surface in the cas
sand. Thus, in our radial configuration, in which the veloc
increases as 1/r towards the center for a given flow rate, on
can have a situation where the three flow regimes coe
simultaneously; the central part is fluidized, followed imm
diately by an unstable zone where cracks appear, while
outer region’s particles remain immobile in a steady seep
regime. In this case, the yield velocity being very low, w

FIG. 8. Linear variation of the first threshold flow rate, an
hence velocity, as a function of applied external pressure on
Hele-Shaw cell~represented here by the torque applied on a dy
mometric screwdriver used to tighten the upper plate!.
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are following a path to the left ofny trans; the comparatively
small value ofn1 in the narrow unstable region explains th
larger amount of time needed to obtain a complete arbo
cence@as s(k);An01#. Near the center of the cell,n1 is
already aboveny and, by Fig. 6, we are in the fluidize
regime.

If we focus our attention on one given crack, we noti
that the inner boundary is close to the fluidized regi
whereas the outer boundary is near the stable seeping z
Thus a crack can be viewed as an expanding pocket of fl
since the inner boundary is moving faster towards the ce
than the outer one. Actually, a crack is never quite homo
neous in terms of width, the wider part tending to expa
faster and the net result being a rotation at the same tim
the crack is widening. The different cracks will then join
form the observed arborescence.

By adding glycerol in different proportions to the distille
water, we changed the viscosity of our fluid and investiga
the effect on the yield flow rate, again verifying Eq.~8!, i.e.,
finding a m21 dependence ofQy . When plotting the yield
flow rate as a function of the porous bulk thickness we fin
linear Qy(e) relationship, which implies, again by Eq.~8!,
the existence of a constant yield velocity~in a given portion
of porous bulk, at a certain distance from the center in
circular geometry; in a planar cell, this yield velocity wou
be constant in the whole porous matrix!. However, as the
thickness is further increased, the uppermost particle la
tends to be washed away before the rest of the bulk~which
remains stable! and there is a departure from the linear la
This can be understood by the fact that we neglected
static pressure due to the weight of the particles themse
in the derivation of Eq.~6!: When e becomes large, or the
external confining pressureP on the plates is kept very low
P;rge and thus in Eq.~8! the yield velocity is now propor-
tional to rge ~and the flow rate quadratic ine!. The upper
layers will then experience a lower yield velocity, since th
support fewer particles, and will be washed away first.

In our experiments it would seem that whereas the cr
distribution for sand particles seems to be a power law,
distribution for spherical glass beads cannot be fitted by s
a law. This might be understood in the following mann
Since the beads have a smaller contact surface relative to
sand particles and are more dispersed in size, small cr
will tend to be filled by neighboring beads, whereas in sa
these cracks would stay stable due to sterical constraints~i.e.,
small arches are more stable in sand or nonspherical par
porous media!.
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We also tried to inverse the flow in our cell, that is,
inject water from the central hole into the porous bulk~radi-
ally divergentflow! to watch if we could obtain the sam
erosion instability on the outer boundary of the bulk. We d
this to dismiss the suspicion that the figures obtained co
be an artifact of the flow geometry since we had no succ
with experiments carried out in planar cells~the fluid always
short-circuits the bulk via the side walls of the cells!. Due to
the fact that the inverse flow is divergent, the instability a
pears at quite higher flow rates than in convergent flow~Fig.
9!.

In all our experiments we were able to determine a frac
dimension, usually lying in the rangeD f51.6– 1.7, generally
slightly lower than the dimension corresponding to diffusi
limited aggregation in two dimensions. We measured
mean branching angle for different branching orders a
found an average overall value of 50.44°. One can calcu
the fractal dimension of such a dichotomic arboresce
knowing the average branching angle if one supposes
the arborescence grows in a Laplacian field@27#. In our case,
the calculation predicts a theoretical dimension of 1.64, c
firming the direct dimension measurements~obtained both
by the box counting method and by the mass-radius met
on binarized images!.

Another feature of Laplacian growth is the screening
fect due to the convergence of fluid current lines at the tips
growing branches: The entire flow is concentrated in
eroded waterways, with no seeping through the porous b
As we established in Sec. II@see the paragraph leading to E
~31!#, this implies thatnll5l0 , wherenl is the number of
branches of widthl andl0 is the width or the parent branc
~see@14#!.

Image subtraction gives us a nice illustration of the sy
metry breaking in the transition between the fracturing of
porous medium and the unstable regime associated with
growth of an arborescence~Fig. 10!. An image is recorded
just as the experiment is begun and is subtracted from
other image taken somewhat later. The result is a map of
particles that moved during the time interval between the
images. Just at the flow rate threshold, one can see an
tropic distribution of fractures, their imprint remaining vis
ible as the branches begin to grow, this time in an anisotro
manner.

Finally, we measured the front velocityu as a function of
the flow rateQ. By recording a series of images during a
experiment and then subtracting successive images, only
particles that have moved in the known time interval w
leave a trace on the resulting image. Thus the evolution
the front can be followed and its velocity evaluated. Diffe

FIG. 9. Injection of water into sand in the circular cell. Th
central hole is visible on the lower left corner and the erosion
stability is apparent on the outer boundary~with a flow rate of 30
ml/mn initially, which is then decreased by 1 ml/mn every 10 s!.
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ent experiments were done, both with the small glass be
and with a thick layer of sand loosely tightened so as
lower the yield velocity. We were thus able to observe fl
idization and record a well defined front in both cases. Fig
11 shows the experimental data fitted by Eqs.~18! and~20!,
implying a Bagnold flow for the particles. However, fo
larger flow rates and hence front velocity, a departure fr
Bagnold’s relation is observed. The reason for this deviat
is still unclear and could be attributed either to the fact t
Bagnold’s relation ceases to be valid for higher particle
locity or to the poor resolution of the data with this expe
mental method. Indeed, when the front velocity exceed
certain value, there is a big uncertainty in the follow-up

-
FIG. 10. Evidence of the movement of porous particles at

threshold~on the left! revealed by subtraction of successive imag
At higher flow rates, erosion takes over, breaking the radial sy
metry ~on the right!.

FIG. 11. Relation between the measured front velocity and
imposed flow rate. The data are fitted by Eqs.~18! and ~20!. The
upper graph corresponds to experiments done on the small g
beads, whereas the lower graph corresponds to sand. The ho
symbols show the average particle velocity~also fitted by a Bagnold
curve!, which is well below that of the front in the fluidized regime
The average is taken on different experiments~for each value of
flow rate! and on the different measurements~again for each value
of the flow rate! for each experiment and the measured values
corrected to take into account the radial experimental geometry
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the front between two successive images~unfortunately, we
could not sharpen the time resolution in the acquisition
consecutive images!.

IV. CONCLUSION

We showed the existence of a hydrodynamic instabi
regime in a nonconsolidated porous medium, when the so
ing fluid flows across the bulk out of the porous mediu
The model we propose can be adapted to a wide variet
erosion phenomena, especially in stratified layers such
riverbeds. Although the theoretical treatment is very sim
to that of a classical viscous fingering instability, there is
important difference in the fact that here only one fluid
present and the deformed interface of the bulk moves in
opposite direction to the fluid flow. Also, the transition b
tween the stable and unstable regimes occurs while both
fluid and the porous grains are in movement~since we first
have a decompaction and fracturing in the bulk that prep
in a way, the perturbation of the interface, which con
quently gives rise to an amplification of the curvature
parts of the boundary!. Thus this instability is not stationar
and is strongly nonlinear at the transition. Although t
stress line configurations between the particles are fa
complicated at the onset of the instability, we showed tha
nevertheless belongs to the class of Laplacian growths.
nally, we saw that the presence of arches in the bulk or, m
generally, the size and shape of the constitutive particles
fluence strongly the topology of the figures obtained.

The particle flux has been shown experimentally to b
square root function of the control parameter of the insta
ity, the fluid velocity. The movement of the bulk particle
undergoing decompaction can therefore be accurately
scribed by Bagnold’s equation and depending on the ef
tive permeability contrast across the interface, the flow
be stabilized or remains unstable. We thus show that dif
ent flow regimes can exist, depending on the value of
yield velocity and the outside force exerted on the cell. Th
flow regimes are represented in a phase diagram, on w
we are able to visualize the distinct paths corresponding
our different experiments~with sand or glass beads, at di
ferent flow rates and external force!.

The erosion avalanche mechanism and the volume f
tion function F(z,t) in the unstable regime are still poorl
s.
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understood. We nevertheless are able to describe certain
tures of the nonlinear growth regime, such as its fractal
mension. To gain more insight into the transition into t
nonlinear regime, computer simulations are now plann
Also, the influence of the third dimension~for larger gaps or
3D flow! on the erosion patterns will be investigated.

APPENDIX: DERIVATION OF THE DISPERSION
EQUATION

From Eq.~22! we isolate the first-order terms

sz52 1
2 k1CV* 1/2~n012ny!21/2dn1 .

We solve the system~14! for w i and replacedn1 from the
above equation:

w015
2a1~n012ny!1/2

k1CV* 1/2

s

k
,

~A1!

w0252
2a2~n012ny!1/2k8

k1CV* 1/2

s

k
.

In the latter equation of the system~A1!, we replaceddn2 by
dn1 through the flow conservation equation

~12F* !dn15~12F!dn2 ,
~A2!

F* 2F5DF⇒dn25S 12F*

12F* 1DF D dn15k8dn1 .

The pressure continuity equation can be linearized at the
terface, giving

p11dp15p21dp2⇒w01z2w02z5a1v01z2a2v02z.
~A3!

n02 can be replaced in Eq.~A3! by n01 through, once again
the conservation equation~A2! leading to@using the system
~A1!#

2~n012ny!1/2

k1CV* 1/2 ~a11k8a2!
s

k
5~a12k8a2!n01,

whence comes the dispersion equation~23!.
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