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We investigate the different flow regimes in nonconsolidated porous media. The porous bulk is soaked with
water, which is then pumped out of it, across the boundary defined by the particles at the edge of the bulk.
Experiments are carried out on sand and glass beads soaked in distilled water and placed in a circular
Hele-Shaw cell, the flow being radially convergent. We show, for a given value of flow velgbiyyield
velocity), the existence of an unstable regime where the fluid-porous interface is deformed and branches
upstream in the bulk. When this velocity is further increased, two cases arise depending on the value of the
yield velocity: Either a second threshold is passed, global fluidization of the porous bulk sets in, and the flow
becomes stable or the instability persists and the canal arborescence continues to grow. The driving mechanism
of this instability is thus the permeability contrast across the edge of the porous bulk; when this contrast
diminishes, the flow becomes stable. A force balance on the boundary particles predicts the threshold value for
the fluid velocity, beyond which the flow is unstable. Using a Saffman-Taylor inspired linear perturbation
analysis[Proc. R. Soc. London, Ser. 845 312 (1958], a dispersion function is foun@predicting the
wavelength dependence of the instability growth amplifutiking into account the particle arch formation in
the porous bulk. We then find the velocity of propagation of the receding front, predicted to be proportional to
the particle velocity beyond the front, itself described by a Bagnold concentrated suspensi¢RrifowR.

Soc. London, Ser. 225 49 (19549]. This front velocity is successfully confronted with experimental mea-
surements. A screening effect characteristic of Laplacian growth phenomena is seen in the experiments as
testified by flow rate conservation between the different branches of the arborescence and direct dye visual-
ization. The topologies obtained are fractal and the measured dimebsioh.6— 1.7 compares favorably to

the calculated dimension from the branching angle distribufi8®063-651X%98)10610-4

PACS numbes): 47.55.Mh, 47.20.Ft, 61.43.Hv, 64.60.Lx

[. INTRODUCTION lar Hele-Shaw cell filled with sand or glass beads in which
the soaking fluid is pumped through a hole in the center of
The problems of flow of granular materials, fracture, andthe lower platg 18], thus establishing a radially convergent
erosion of nonconsolidated porous media have gained mudtow. A controlled normal force is applied on the upper plate
insight recently. The solid stress distribution in a compactin all our experiments.
granular packing has been investigated both theoretically and Our theoretical approach differs from the models based on
experimentallyf1-3] and a considerable amount of work has classical elastoplastic ruptufé—8| by taking into account
been done on avalanche phenomena and stability under flothie granular nature of the material through the redistribution
[4,5]. A large body of work has also been published on theof the normal stresses and by predicting a selective erosion
problems of sand infiltration in oil or water wells, leading to regime, which we call the unstable regime. This predicted
different analytical modelg6—8]. Growing cracks have been (and observedregime stands in sharp contrast to the two
described using lattice models in which elastic bonds aratable regimes of global fluidization or liqguefaction and sta-
broken with different probability laws or lattice geometries tionary seeping flow, occurring for slightly different flow
[9,10. Erosion models also rely on lattice simulations in conditions. These stable regim@s the sense of perturbation
which the soil level is calculated at each point taking intoanalysig are the only ones predicted by the existing plastic
account water flow from neighboring lattice poiffsl—13. yield models[6-8].
In this article we look at the different flow regimes possible  As the flow rate increases in the cell, we observe a first
in a nonconsolidated porous mediUm4,15, showing the transition from a stable seeping regime to an unstable erosion
existence of an erosion instability, and we propose a theoretegime. As this threshold is reached, a decompaction occurs
ical treatment based on a solid and fluid force balance and ia the porous bulk, with fractures forming near the efige
Saffman-Taylor inspired stability analysi46,17]. The po- In our experiments, stress arches across particle contacts
rous medium is soaked with a Newtonian fluid that flowsform in the bulk, redirecting the forces away from the radial
across an interface defined by the boundary of the poroudirection. These forces are solid-solid interactions between
bulk, in a direction from the bulk outward. We used a circu-the bulk particles, resulting from a combination of fluid pres-
sure and the weight of the particles. The existence of a stress
threshold above which the particles begin to move is due to
* Author to whom correspondence should be addressed. solid friction between the particles and the confining plates
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on the one hand and between the particles themselves on the
other [19]. The chains of strong contact forces passing 0
through these arches are unstable unless other particles par-
ticipating in weaker force chains fill the space immediately
behind the archel20]. Thus the particles on the edge of our
porous medium form unstable arches, which will be the first

to collapse when the threshold is reached. The irregular in-
terface left by the decompaction process induces local devia- ,_,
tions from a purely radial flow, breaking the symmetry in our
system (average stress distribution, isobar configuration, FIG. 1. Analogy with the silo problem in planar geometry. On
etc). As the current lines converge on the tips of smallthe left isacolumn of sand fractures unde_r its own weight when the
breaches in the interface created by the fracturing procesioWwer boundary is removed and on the right are cracks form near
these tend to grow due to the increased value of the locdf® interface of sand particles under water flow.

fluid stress, compared to other areas, which are then effec- s :
tively screened. Thus particle-free waterways will develo of the cracks, indicating that all sizes are represefsele-

and branch upstream in the porous bagainstthe direction ?ndependent glistributi(j_nA similar phenomeno_n is observed

of flow. As opposed to the now classical fluid digitation ex- 1[?1 our: ﬁ;pe”mlfms with .Satr;]d' at the glol‘{(\’"nr?rciq sltress
periments, the flow in this instability is directed from a re- reshold, cracks appear in theé porous bulk while 1t 1S 100s-
gion of low permeability to a region of high permeability, ening up, exhibiting as well a power-law dependence on size.

whereas the interface between the two regions recedes in{l'(pe alteration of the flow characteristics near such cracks is

the zone of low permeability. Here the interface is not aresponsulole f(_)r the or(;s?t_lof the instability, which we will
meniscus between two nonmiscible fluids but simply the hor/'OW analyze in more detail.
derline between immobile particles and particles moving

with the fluid in a suspension. Nevertheless, we show that Il. THEORY
this instability still belongs to the class of Laplacian growths, \y/a establish a theoretical model of the erosion instability

seemingly in contradiction with the predictions of the p, ot examining the stress distribution in a compact granu-

Saffman-Taylor theory, the driving mechanism being thejg; haan and its stability under external forces such as gravity
permeability contrast across the interface. Depending on th@r the fluid pressure gradient in our experiences. This analy-

value of the yield velocitywhich varies, for example, with  giq gives us the expression of two yield velocities corre-

the external force applied on the solid porous mafme can  g55nding to a decompaction of the bulk and a transition to
predict two different evolutions as the fluid velocity iS IN- the erosion instability. The instability is due to the perme-
creased. A second threshold may be passed, above which tgii contrast across the interface; when this contrast is

stress is everywhere strong enough to qve_rrlde the frICt'o'aveakened, the instability is killed and global fluidization sets
fo'rce.s and the whole bulk moves, est.ablllshlng a global fluy, “gince the instability is believed to belong to the Laplacian
idization. In fact, as the mean velocity increases near the,,ths class, the permeability contrast can be erased only if
boundary of a growing tip, a larger quantity of sediment iSino | gpjacian screening can be avoided and the growing wa-
poured into the adjacent channel, tending to block it and thug,yays filled with bulk particles. In the framework of a lin-
to diminish the size of the ch_annel apd at the same time @, stability analysis, by supposing the existence of a small
remove the Laplacian screening, Iead_lng toa uniform MOVesinusoidal perturbation of the interface, writing the continu-
ment of the front. Another case, for higher yield velocity, is ity of pressure and flow rate as well as mass conservation

;che_ persitencehof tnek;ms_tﬁble flow regime ;?r_sll ﬂ.u'd V€-across the interface, and adding the expression of the un-
ocities above threshold with no transition to fluidization. In giap1a yield velocity, we arrive at a dispersion equatia

this situation, the sediment poured into the growing canals igyinq the instability growth coefficiers to the canal width
evacuated faster than the receding tip of the waterways. Thygs,, o numbelk). This equation is then reconsidered to take

the canals are characterized by a very high permealtdy jni, account the effects of the formation of particle arching

cr:)mpartlad to the porous bu(ljk?]sulting icn r:he persisltence of in the porous bulk. We then express the particle velocity and
the Laplacian screening and hence of the unstable state. ¢ gecompaction wave velocity in the different regimes, de-

It may be helpful to consider, at first, a different problem o jing on the value of the yield velocity; we thus find the
showing an analogy to our experiments, namely, the sil onditions for global fluidization to take place. The nonlinear

problem. A narrow container is filled with a granular mate- o qime is also briefly described and the fractal dimension of
rial, sand, for example, and the weight of the particles ispa arhorescences predicted.

recorded as a function of the heap’s heigh21]. It is found

that part of the stress is redirected at the wall of the cylinder,
making the weight plateau at a constant value, independently
of any further increase in height. The formation of particle
arches in the granular medium is responsible for this stress To simplify matters, we will consider a planar geometry
redistribution, with the uppermost particles pressing sidewis@nd use the silo analodgee Fig. 1 Indeed, in the same way
on the lower ones. Furthermore, if the lower confiningthat the dry granular heap in the silo is subject to the action
boundary is suddenly removed, a distribution of fracturesof the constant force of gravity, the bulk in our cell is subject
appears in the column during the decompaction progglss to the pressure gradient for¢ehich is constant in planar
this distribution presents a power-law dependence on the sizgeometry and the same redistribution of stress occurs in

A. Solid stress distribution due to Darcian flow
in a granular heap
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both experiments, due to solid static friction. In terms of interface
volume forces, the analogy is then i

pg—gradp. D Vo™
The normal stress distribution is described by the Janssen
hypothesiq 22]

=Koz, 2 ® i
with the sharing coefficient@K <1, and the Coulomb fric- Region 1 Region 2

tion force is written as FIG. 2. Porous medium’s boundary in a planar Hele-Shaw cell

3) as seen from above. The packing volume fraction is represented by
®* and the particle suspension resulting from porous bulk loosen-

wheref, is a static solid friction coefficient. We next write N9 and separation is denoted s A small perturbation of the
the force balance at equilibrium for unit bulk volume by interface is shown and the arrows indicate the direction of the mean
considering the force that should be applied at the interfac8onPerturbed fluid velocities.

to maintain the bulk in placgl]:

0= Ty

wherea is the average size of the particlgs the fluid vis-

d0i;  dFex cosity, anda ! the porous permeability. In the same way,
> Ay 0, (4) one can estimate the first yield velocigorresponding to the
! instability thresholgl by writing the same balance of forces
d 2§ on one particle:
Sl Ko+|gradp|,=0 (5)
dz € ’ |gradp)|yield a3:2fspa2

for our experiment, withr,,= o ande the width of our Hele-  |gading to

Shaw cell(or a unit width in the silo bulk —do/dzis the

volume force needed to counteract the fluid force pushing on _ a

the bulk. This normal stress variation is a direct consequence vy=2—"fsP. ®
of the Janssen relation. The solution of Eg). is ®

—(z+2z9)
N

An important point remains to be clarified: Why should only
. 2o>0, (6)  thefirst rows of porous particles be detached from the bulk at
the threshold? To answer this question we will suppose that

where A =e/2Kf, is the Janssen screening length. We as-a crack appears at a distanz’efrom the interfacgdefined

. by z=0) so as to separate the particles into two distinct
sume the external applied force to be much larger than thSIOCkS which we will call block 1 and block 2
internal vertical pressure distribution due to gravity in the Jusf as the blocks are about to move We’ can write the
porous bulk, allowing us to neglectgg term in Eq.(5). The force equilibrium equatioi5) for each bloci<'
first derivative of Eq.(6) evaluated at the interface gives us '
the external force needed to maintain equilibrium in the bulk:

o=\|gradp|| 1—exp

do ,
- d—21=|gradp|e(Z “2 - 70.2'>0
d_U: _|V”p|e—(z+zo)/>\
dz ! (9)
d0'2 —z'I\
— —=|gradple .
do 2f,P 2f,P dz
@ e IVePl=—5

z=0 This is the force per unit volume that must be applied in

In the latter equatiorP is the external pressure associatedOrder to maintain .each blocl_< in position. £5-0, t_he forcg
needed to maintain block 2 in place approaches its maximum

with the confining force exerted on the bulk. As the bulk .
may fracture, we took the maximum value of the force en_yalue_|gradp|. Thus the cracks near the bulk edge V.V'” grow
suring equilibrium, that iszo— 0. The stability condition for first since the force that would be needed to maintain them in

: : place is always higher than that needed for the other blocks
the bulk as a whole is thus given by and the edge particles will therefore be the first to leave the

2fP bulk.
|grad p|yie|d:Ta
B. Linear stability analysis of the interface
which, combined with Darcy’s Iavsz_;Lz(—aZ/a,u)gradp, We will now write the stability condition for the porous

gives an estimate of the velocity needed for decompaction:interface, using a classical perturbation apprdd@&j. Figure
) 2 shows the interface, in planar geometry. The fluid pressure
—  2a°fsP field in the porous mediunfregion 1 and outside ifregion

Vdec™ ) Te ™ 2) in a Hele-Shaw cell satisfies, if incompressible,
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VZ2p=0. (10) interface
The velocity field will be denoted by
U1:U()1+ 5U1, U2:l)02+ 51)2, (11)

wherev y; andv o, are the nonperturbed fluid velocities in the
porous bulk and outside it, respectively, with the perturba-
tions dv, anddv,. To zeroth order, the pressure field can be
written, using Darcy’s law in region 1 and a similar law for
a two-dimensiona({2D) viscous flow in region 2,

—avez, z<0

Po= — UL, z>0. (12)

FIG. 3. Schematic illustration of the interface as the porous bulk

. . . . . is undergoing decompaction. In region 1, before the front, the par-
We now introduce a small sinusoidal perturbation of the in- gong P 9 P

. ; ticles are immobile and the packing is maxima@ £ ®*). In re-
terface between the porous particles and the fliaid the gion 2, just after the front, the bulk is dilating and the particles

boundary between regions 1 and of amplitude ¢ pegin to move with the Bagnold velocity, . In this region, the
~exyikx+st]. At first order, we take a similar pressure per- particles experience the external applied pressurnd an addi-

turbation field tional pressureAP due to the dilatation. The volume fraction is
) slightly lower than that in region 1again, because of the dilata-
op1~ ¢1(z)exdikx+st], tion). In region 3, the particles begin to be carried away by the fluid
and no longer “feel” the outside pressuRe The volume fraction
op2~ ¢2(z)exdikx+st] diminishes with the distance from the front.
and by Eq.(10) we find (retaining the physical solution where ®* is the bulk volume fraction and the volume
_ Kz _ k2 fraction after decompaction, just beyond the fran;is the
P1= P01, P27 P (13 particle velocity at the onset of decompaction. A slight dila-

ation is associated with this decompaction, leading to a dif-
erence of volume fraction across the front not bigger than
10%. Thus(for ® ~d*)

This perturbation induces a corresponding perturbation in th
velocity field, given by Eq(12) (for small 2):

d(6py)
=_ ~— d*y
1603 9z Keoss, —u= chp =Ko, With K;>1. (18)
(14
@26v2=*+ Koo Beyond the front, the particles of the dilating bulk experi-
' _ _ ence a pressuré+ AP due to the external force applied on
1. Dispersion equation the cell combined with the increase in interparticle force as-
The velocity u of the interface can correspondingly be Sociated with the dilatatiof23] (region 2 in Fig. 3.
written as The mean particle velocity in this configuration can be
calculated with the Bagnold equati$p®3]
U=Up+du=—— 15 d (dvp\? dp 2fP
0 dt (19 —y— =L LA (19)
dy \ dy Jz a
and the perturbation velocity
or
d
5u=—d—f=—s§. d (dv, 2+V* o
dy dy a3 (vl Uy)_ '

u is the velocity with which the decompaction wave recedesh \uti £ which i
through the porous bulk. We now write the dispersion equall® Solution of which is
tion associated with the instability’s growth:

el2 el2
— d J’ d :CV*lIZ _ 1/2, 20
s{=—Gdv,, (16) (e fo ’p y/ 0o Y (v1—vy) ™ (20

whereG is a function of the fluid velocity; and the yield Wwith

velocity vy . In order to find the explicit form of this func-

tion, we will first look at the flow of particles immediately _ Q
behind the front. Conservation of mass across the receding 10
interface(as written for the solid particlegives

e 3/2

a

where agaire is the cell gap,a the particle sizep™? the
—u(®* —P)=dy,, (17 permeability, the fluid’s viscosity, andy a constant relat-
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ing the momentum transfer between particle layers to the _
dilatation pressure, which depends on the particle character- vy=2fsP
istics [23]. From here onward, the angular brackets in the

notation of the average particle velocities will be droppedwhenka=1 we recover the former yield velocity,=v, .
without ambiguity since we will not deal with the instanta- This leads us to a new dispersion equation

neous velocities. At this point, we wish to stress that the

Bagnold flow formalism adopted here may not be the best k,CV* 172 Vo1
choice, as it concerns collision driven granular flow and not 5= 2 [v01—vy(ak)3]1’2
solid friction dominated granular flow, as in our case. Recent
experiments as well as computer simulatidi2g] would A cutoff wave numbefwhich is different from the physical
seem to point to an exponent 1 instead of 1/2 in &), cutoff associated with the particle size in E§3)] appears,
even though the flow geometry is quite different in our ex-shifting the smallest canal widths that will develop in the
periments(confined flow vs open channel flow; see the dis-unstable regime to larger length scales:

cussion i 24]). However, there are no well defined behavior

(ka)®.

a10M0

a— k' ap
a1+ «k'as

k. (25

; S o /3
laws for concentrated suspensions exhibiting dry friction as A vor@ioio)| 26)
for now and as we will see in Sec. Ill, Bagnold's law is cutof™1 "2 f Pa’
apparently well verified in our case, at least near the thresh- ) .
old. For 200um particles with a water flow rate equal to 2 ml/mn
We can now introduce the Bagnold velocity in relation @and an external confining pressure of 300 Pa, which is
(18) and develop the fluid velocity to first order: equivalent to 1 kg on an upper cell plate of 10 cm diameter,
the shift in wave number is frof.@a=1 to 0.17 in Eg.
u=—k;CV* Yqv g —vy+ 8vp) V2 (26), corresponding to a shift from,= 200 xm to a minimal
) o ) branch width ofA ;=3.6 mm.
At the threshold, this equation is nonlinear and we cannot
pursue our analysis: 2. Instability phase diagram
vor=vy, U=—k;CV* Y2(5v)Y2. (21) A small distance downstream, the particles flow in a con-

centrated suspensidwith ®(z) decreasing witle, the dis-
For higher velocities, this expression can be linearized tance from the interface, as in region 3 in Fid. Bwo cases
arise, depending on the ratio of the particle mezF') down-
stream of the front and the decompaction ftbX v,. (a) If
v"3> k1vp then the particles downstream of the front are
evacuated more rapidly than the incoming flux of freshly
d_decompacted bulk particles, with a very small apparent vol-
ume fraction, i.e.®—0. (b) On the contrary, ifv,<xiv,
then the decompaction front recedes into the bulk faster than
the rate of evacuation of the particles downstream, with the
effect of plugging the newly created channdt ®*). In
K, (23)  this situation of concentrated suspension flow, Bagnold's
equation still applies and we can write the downstream av-

wheres is the amplification factork’ the wave number as- €rage particle velocity ao friction term)
spciatgd with the interface perturba_tion, artl a constant b/ = G\ U2, 12 27
given in the Appendix. They; are given by the Kozeny- p 1
Carman[25] relation and a similar relation for 2D viscous
flow on the other side of the interface:

51)1
2(vor—vy)

U01>Uy, u=—K1CV*l/2(001—vy)1/2[1+

By solving Eq.(14) for the pressure perturbation and consi
ering pressure continuity across the interfégaee the Appen-
dix) we arrive at the dispersion equation

ch:v*:l/2 Vo1 al_K,az
- 2 (vo1— Uy)ll2

S

a1tk a,

This last flow regime is thus stable and corresponds to global
fluidization, the transition occurring for low values of the
P2 threshold velocity. The value of the second threshold veloc-

a1=a10% with a41,=180 ity is given by (Fig. 4

(@) (24 K CV* V2, — Vy)1/2: CcV* 1/21/%/2,
2’
a2=a20?—, (2%l 12 2 (28)
K
Vv, = 14
y Ki_ 1Y

Equation(23) implies a linears(k) relationship, in agree-
ment with our Laplacian growth supposition, that is, ampll'Above this second threshold, the permeability contrast is
fication of large wave numbers preferentially. However, weVery low (the Laplacian screening is I9sfThe unstable re-
must now take into account the stabilizing effect of particle

) . . . )
arches present in the bulk. Let us write the force balance oﬂ'me’ for_ IOWUV’. IS thu_s res_tncted to the mter_v@i/y,vy].

N For higher yields, i.e., if the decompaction occurs at
such an arch of characteristic sige

higher fluid velocities, the particles will be washed away
gradp&3=2fPa?, with a velocity v, comparable to the fluid velocity, very
close behind the front. Thus, a8 will be negligible com-
giving us a new estimate on the threshold velocity: pared tod*, we can write[case(a)]
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- Vl %
> A 4
) u D
O
Vi stable
I fluidization
l zone
Vy V'Y V1 |
| .
FIG. 4. Velocity u of the receding front and Bagnold down- ! stable secping
stream particle velocity,, in the case of low threshold velocity. , Zonc
The unstable regime is restricted to the interval betwegand V),, !
as the newly formed channels cannot be evacuated by the fluid v ' ~
y trans Vy

rapidly enough to ensure Laplacian screening beyqndhe chan-

nels collapse and the porous bulk is entirely fluidized FIG. 6. Phase diagram showing the different flow regimes as a

function of the first threshold velocity. The last depends on the
, 1 amount of force exerted on the cell, the particle shape and size, and
UVpT V2T T T pr V1= KaU1> KqUp. (29) the gap width between the plates of the cell. On the left of the
transition yield velocityv, y,ns, the particle flow is always that of a
Here the Laplacian screening will persist. concentrated suspension and can be described by the Bagnold equa-
For any value ofv; above the threshold:,,’J will be bigger  tion (both in the narrow unstable region and in the fluidized gtate
than u. In the limiting case, they; value for which Vr,) is  On the right of vy 4405 the particles flow in a diluted suspension,

equal tou marks the transition back to the Bagnold regimeWhiCh can be assimilated to a viscous flow. Because of the Laplac-
described abovéFig. 5): ian screening, there is no transition back to a stable fluidization

regime.
chv* 1/2( v— Vy) 1/2_ Koy
g =(v)en=e*\7, /g,
and:
wherer,, is the wall shear stress. As the flow rate increases,
so does the wall stress, until it reaches the lateral erosion
yield 5. Above this threshold) increases, causing at the

1[k¥\2 V* [k
PywansTg \e,| 2001 K, ) |
same time a decrease in the wall shear stress. We can thus
We can summarize the different results obtained above bwrite for the steady state

drawing a phase diagram illustrating the various flow con- )
figurations(Fig. 6). gy~e°N1g/ g

2 3

e

3 (30

. . Conservation of flow rate between tmeorder\ branches
C. Nonlinear regime .
and the parent branch gives

When the yield velocityy, is above the Bagnold viscous
transition valuevy yansand the fluid velocityr; is well above N\g\=const=qpo,
vy, We are in the unstable and nonlinear flow regime. Itisin
this regime that the canal arborescences develop mo¥fhich implies
quickly.

The arborescence develops primarily at the tips, but in the
fully developed unstable regime, lateral erosion also sets in,
widening the lower-order branches. To within a numerical lll. EXPERIMENTAL RESULTS
constant, the average flow rate in one bratafithickness\
and heighte) is given by

n)\)\:)\o. (31)

Our experimental setup consists of a circular Hele-Shaw
cell with a 2-mm hole drilled in the center of the lower plate.
A plastic tube connects this hole to a syringe mounted on a
high precision pump, with which we impose the flow rate in
the cell(the flow is radiallyconvergentand the interface we
analyze is materialized by the circular edge of the solid ma-
trix near the central hoje We take sand or spherical glass
beads for the nonconsolidated porous medium and distilled
water for the fluid. The sand granulometry gives particle
sizes centered on 258m, while the glass beads we used

FIG. 5. Front velocityu and downstream particle velocity, in consist of two sizes, centered on 40 and 200. The spac-
the case of high threshold velocity. Here the particles are carried'd Petween the plates varies from a minimum of about three
away with the fluid faster than the receding front, keeping the growJayers of superimposed particles up to about ten layers. The
ing channels from clogging. The high channel permeability induceg€rmeability of the sand was measured and found to be 167
converging current lines on their tips, thus ensuring their growthDarcy. We recorded the experiments with a video camera
and maintaining the Laplacian screening. The limiting case is als@nd stored the images on a computer equipped with an image
shown, defining the transition yield velocity, yans. analysis prograri26]. Figure 7 shows three erosion patterns

.2
>
E}

Vytrans  Vy Vi
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FIG. 7. Branching topology obtained in unstable pumping of water from sand pafiidtesa size of~250 um and flow rate of 8 ml/mn
on the lef} and from spherical glass bea@gith a size of~200 um and flow rate of 4 ml/mn in the middle and size-e0 um and flow
rate of 0.08 ml/mn on the right

obtained with sand and glass beads. _ ~are following a path to the left ofy yns; the comparatively
The topology of the figures obtained in the intermediarysmall value ofv, in the narrow unstable region explains the
unstable regime depends strongly on the shape and the siggger amount of time needed to obtain a complete arbores-

of the constitutive porous particles, as well as on the forc ence[as s(k)~\vo;]. Near the center of the celk, is

applied on the particles via the upper plate. Irregular san ; : -
particles will tend to form much more stable arches thar}elgf‘ndg abovery and, by Fig. 6, we are in the fluidized

spherical glas_s beads_will and applying a large force on the If we focus our attention on one given crack, we notice
upper plate will consolidate these arches even more. Accorc{hat the inner boundary is close to the quidi'zed region

ing to Eq.(8), we expect to find a linear dependence of the . .
i X - ; whereas the outer boundary is near the stable seeping zone.
unstable threshold velocity with external applied force in our. . ; .
) ; . R Thus a crack can be viewed as an expanding pocket of fluid
experiment, rather nicely confirmed in Fig. 8. since the inner boundary is moving faster towards the center
The different topologies in Fig. 7 illustrate two different y 9

.than the outer one. Actually, a crack is never quite homoge-

paths followed in the phase diagram of Fig. 6. In the experi- . us in terms of width, the wider part tending to expand

ment with sand, the yield velocity was about 50 times hlgherfaster and the net result being a rotation at the same time as

than that needed to move the smallest glass beads and T crack is widening. The different cracks will then join to
global fluidization could be observed, independently of the 9. J

. : . ; form the observed arborescence.
fluid velocity v, . We are thus in the case of a vertical path to . L . -
; ; ; By adding glycerol in different proportions to the distilled
the right of vy (rans, in the unstable region.

On the other hand, in the experiment with the small bead water, we changed the viscosity of our fluid and investigated

the figure took 20 times longer to materialize as compared ts<t?he effect on the yield flow rate, again verifying E§), i.e.,

. _1 . .

the sand. The width of the unstable regime, in terms of flowIndlng ap depe_ndence 0Qy. When plof[tlng the y|el_d

; . flow rate as a function of the porous bulk thickness we find a
rate, is very narrow, probably since the contact surface b inear O.(e) relationship, which implies, again by E¢)
tween the beads themselves and between the beads and the <Y P, : plies, again by ),

: . € existence of a constant yield velocity a given portion
walls is much smaller than the contact surface in the case SO :

. . ) S ; - Of porous bulk, at a certain distance from the center in our

sand. Thus, in our radial configuration, in which the velocity _. . Lo .
. . circular geometry; in a planar cell, this yield velocity would
increases as fltowards the center for a given flow rate, one

can have a situation where the three flow regimes coexisp., constant in the whole porous majritiowever, as the
; ) . L 9 : Shickness is further increased, the uppermost particle layer
simultaneously; the central part is fluidized, followed imme-

. ; tends to be washed away before the rest of the bulkich
diately by an unstable zone where cracks appear, while the' ™ . .

e - O g . remains stab)jeand there is a departure from the linear law.
outer region’s particles remain immobile in a steady seepin

regime. In this case. the vield velocity being very low Weq'his can be understood by the fact that we neglected the
gime. ' y y 9 y ' static pressure due to the weight of the particles themselves

in the derivation of Eq(6): When e becomes large, or the

1.2 external confining pressufe on the plates is kept very low,
L P~ pge and thus in Eq(8) the yield velocity is now propor-
€ o8 tional to pge (and the flow rate quadratic ie). The upper
£ 06 I » layers will then experience a lower yield velocity, since they
3 | support fewer particles, and will be washed away first.
o 04 In our experiments it would seem that whereas the crack
02T distribution for sand particles seems to be a power law, the
0 ‘ * distribution for spherical glass beads cannot be fitted by such
10 12 14 16 18 20 a law. This might be understood in the following manner.

Since the beads have a smaller contact surface relative to the
sand particles and are more dispersed in size, small cracks
FIG. 8. Linear variation of the first threshold flow rate, and Will tend to be filled by neighboring beads, whereas in sand

hence velocity, as a function of applied external pressure on thghese cracks would stay stable due to sterical constraiats
Hele-Shaw cellrepresented here by the torque applied on a dynasmall arches are more stable in sand or nonspherical particle
mometric screwdriver used to tighten the upper plate porous media

P (cNm)
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FIG. 9. Injection of water into sand in the circular cell. The  FIG. 10. Evidence of the movement of porous particles at the
central hole is visible on the lower left corner and the erosion in-threshold(on the lef) revealed by subtraction of successive images.
stability is apparent on the outer boundawith a flow rate of 30 At higher flow rates, erosion takes over, breaking the radial sym-
ml/mn initially, which is then decreased by 1 ml/mn every 10 s  metry (on the righ}.

We also tried to inverse the flow in our cell, that is, to t . t d both with th Il dl bead
inject water from the central hole into the porous b(rtkdi- ent experiments were done, both wi € small giass beads
ally divergentflow) to watch if we could obtain the same and with a_th|ck Iayt_ar of sand loosely tightened so as to
erosion instability on the outer boundary of the bulk. We did!Wer the yield velocity. We were thus able to observe flu-
this to dismiss the suspicion that the figures obtained C0u|bd|zat|on and record a well deflned_ front in both cases. Figure
be an artifact of the flow geometry since we had no succesk! Shows the experimental data fitted by EQs) and(20),
with experiments carried out in planar celtie fluid always implying a Bagnold flow for the particles. However, for
short-circuits the bulk via the side walls of the cgllBue to  larger flow rates and hence front velocity, a departure from
the fact that the inverse flow is divergent, the instability ap-Bagnold’s relation is observed. The reason for this deviation
pears at quite higher flow rates than in convergent flBiy.  is still unclear and could be attributed either to the fact that
9). Bagnold’s relation ceases to be valid for higher particle ve-
In all our experiments we were able to determine a fractalocity or to the poor resolution of the data with this experi-
dimension, usually lying in the randg;=1.6—1.7, generally mental method. Indeed, when the front velocity exceeds a
slightly lower than the dimension corresponding to diffusioncertain value, there is a big uncertainty in the follow-up of
limited aggregation in two dimensions. We measured the
mean branching angle for different branching orders and

found an average overall value of 50.44°. One can calculate o2
the fractal dimension of such a dichotomic arborescence _
knowing the average branching angle if one supposes that g 0.2
the arborescence grows in a Laplacian fi@d]. In our case, 2 s
the calculation predicts a theoretical dimension of 1.64, con- 5
firming the direct dimension measuremeiitbtained both Voot
by the box counting method and by the mass-radius method 0.05 |
on binarized images

Another feature of Laplacian growth is the screening ef- Q Lot g0t 610 810¢ 100
fect due to the convergence of fluid current lines at the tips of

growing branches: The entire flow is concentrated in the @ (mils)
eroded waterways, with no seeping through the porous bulk.
As we established in Sec.[lsee the paragraph leading to Eg. 02 ¢
(31)], this implies thain,A =\, wheren, is the number of 0.16 |
branches of width. and\ is the width or the parent branch i ¢
(see[14]). E 012
Image subtraction gives us a nice illustration of the sym-
. . - . A 0.08
metry breaking in the transition between the fracturing of the 3 .
porous medium and the unstable regime associated with the ., |
growth of an arborescend&ig. 10. An image is recorded Q
just as the experiment is begun and is subtracted from an- 0 : H 0000000000
other image taken somewhat later. The result is a map of the 0 0005 001 0015 002 0025 0.03
particles that moved during the time interval between the two Q (mi/s)

images. Just at the flow rate threshold, one can see an iso- FIG. 11. Relation between the measured front velocity and the

tropic distribution of fractures, their imprint remaining vis- imposed flow rate. The data are fitted by E4E8) and (20). The

ible as the branches begin to grow, this time in an anisotropigner graph corresponds to experiments done on the small glass

manner. _ _ beads, whereas the lower graph corresponds to sand. The hollow
Finally, we measured the front velocityas a function of  symbols show the average particle velodayso fitted by a Bagnold

the flow rateQ. By recording a series of images during an curve, which is well below that of the front in the fluidized regime.

experiment and then subtracting successive images, only thee average is taken on different experimetits each value of

particles that have moved in the known time interval will flow rate and on the different measuremefiggiain for each value

leave a trace on the resulting image. Thus the evolution 0bf the flow rate for each experiment and the measured values are

the front can be followed and its velocity evaluated. Differ- corrected to take into account the radial experimental geometry.
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the front between two successive imagesfortunately, we understood. We nevertheless are able to describe certain fea-
could not sharpen the time resolution in the acquisition oftures of the nonlinear growth regime, such as its fractal di-

consecutive images mension. To gain more insight into the transition into the
nonlinear regime, computer simulations are now planned.
IV. CONCLUSION Also, the influence of the third dimensidfor larger gaps or

. o 3D flow) on the erosion patterns will be investigated.
We showed the existence of a hydrodynamic instability

_regime_ in a nonconsolidated porous medium, when the _soak- APPENDIX: DERIVATION OF THE DISPERSION
ing fluid flows across the bulk out of the porous medium.

. . EQUATION
The model we propose can be adapted to a wide variety of
erosion phenomena, especially in stratified layers such as From Eq.(22) we isolate the first-order terms
riverbeds. Although the theoretical treatment is very similar L 1 1
to that of a classical viscous fingering instability, there is an S{=—3k1CV* (v —vy) O
important difference in the fact that here only one fluid is
present and the deformed interface of the bulk moves in th
opposite direction to the fluid flow. Also, the transition be-
tween the stable and unstable regimes occurs while both the

We solve the systenl4) for ¢; and replacesv; from the
above equation:

2a1( Vo1— Vy)l/2 S

fluid and the porous grains are in movemesihce we first CO= T — s

have a decompaction and fracturing in the bulk that prepare, K CV* k

in a way, the perturbation of the interface, which conse- v (A1)
guently gives rise to an amplification of the curvature of 2ap(vor—vy) k" s

parts of the boundajy Thus this instability is not stationary Pom T OV

and is strongly nonlinear at the transition. Although the .

stress line configurations between the particles are fairlyn the latter equation of the systehl), we replacedv, by
complicated at the onset of the instability, we showed that it¥¥1 through the flow conservation equation
nevertheless belongs to the class of Laplacian growths. Fi- . _

nally, we saw that the presence of arches in the bulk or, more (1=®%) v, =(1-D)dvy,

generally, the size and shape of the constitutive particles in- 1—p* (A2)
fluence strongly the topology of the figures obtained. P* —¢=A<I>=>5v2=( _ Svi=x'bv,.
The particle flux has been shown experimentally to be a 1-9*+AD

square root function of the control parameter of the instabil- - . . . .
ity, the fluid velocity. The movement of the bulk particles The pressure continuity equation can be linearized at the in-
undergoing decompaction can therefore be accurately dé€fface giving

scribed by Bagnold’s equation and depending on the effec- 5D = Dot SDo=> _ _ _

tive permeability contrast across the interface, the flow can P17 9P1= Pt 0Po= Pord — Poxl = arvond azvozg“(.A3)

be stabilized or remains unstable. We thus show that differ-

ent flow regimes can exigt, depending on the value of the,y, can be replaced in EGA3) by v, through, once again,
yield velocity and the outside force exerted on the cell. Thesghe conservation equatiai2) leading to[using the system
flow regimes are represented in a phase diagram, on whicfa1)]

we are able to visualize the distinct paths corresponding to

our different experimentéwith sand or glass beads, at dif- 2(vo1— Vy)l/2 , s ,
ferent flow rates and external foice P (a1t x’ay) p=(ar1= " az)von,

The erosion avalanche mechanism and the volume frac-
tion function®(z,t) in the unstable regime are still poorly whence comes the dispersion equati2f).
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